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Signal Representation and Modeling

The purpose of this lab is to

▪ Understand the concept of a signal and how to work with

mathematical models of signals.

▪ Discuss fundamental signal types and signal operations used in

the study of signals and systems.

▪ Experiment with methods of simulating continuous- and discrete-

time signals with MATLAB.



Mathematical Modeling of Signals

▪ The mathematical model for a signal is in the form of a formula,

function, algorithm or a graph that approximately describes the time

variations of the physical signal.



Continuous-Time Signals

▪ Consider x(t), a mathematical function of time chosen to

approximate the strength of the physical quantity at the time instant t.

▪ In this relationship t is the independent variable, and x is the

dependent variable.

▪ The signal x(t) is referred to as a continuous-time signal or an analog

signal.



Continuous-Time Signals: Problem 1.1 (a)



Continuous-Time Signals: Problem 1.1 (a) – Solution



Continuous-Time Signals: Problem 1.2



Continuous-Time Signals: Problem 1.2 (a) – Solution



Continuous-Time Signals: Problem 1.2 (b) – Solution



Signal Operations: Addition of a Constant Offset 

▪ Addition of a constant offset A to the signal x(t) is expressed as

g(t) = x(t) + A



Signal Operations: Addition of a Constant Offset 

▪ Addition of a constant offset A to the signal x(t) is expressed as

g(t) = x(t) + A



Signal Operations: Multiplication By a Constant Gain Factor

▪ A signal can also be multiplied with a constant gain factor

g(t) = Bx(t) 



Signal Operations: Multiplication By a Constant Gain Factor

▪ A signal can also be multiplied with a constant gain factor

g(t) = Bx(t) 



Signal Operations: sop_demo1



Signal Operations: sop_demo1



Signal Operations: sop_demo1



Signal Operations: Adding Signals

▪ Addition of two signals is accomplished by adding the amplitudes of

the two signals at each time instant.

g(t) = x1(t) + x2(t)



Signal Operations: Multiplying Signals

▪ Multiplication of two signals is carried out in a similar manner.

g(t) = x1(t) x2(t)



Signal Operations: Example 1.2



Signal Operations: Example 1.2 – Solution



Signal Operations: Example 1.2 – Solution

The addition of the two signals is obtained as:



Signal Operations: Example 1.2 – Solution

The product of the two signals is obtained as:



Signal Operations: Example 1.2 – MATLAB



Signal Operations: Problem 1.3 (c)



Signal Operations: Problem 1.3 (c) – Solution



Signal Operations: Time Shifting

▪ A time shifted version of the signal x(t) can be obtained through

g(t) = x(t - td)

▪ If td is positive, g(t) is a delayed version of x(t).



Signal Operations: Time Shifting

▪ A negative td, on the other hand, corresponds to advancing the signal

in time by an amount equal to −td.



Signal Operations: Time Scaling

▪ A time scaled version of the signal x(t) is obtained through

g(t) = x(at)

▪ A scaling parameter value of a > 1 results in the signal g(t) being a

compressed version of x(t).



Signal Operations: Time Scaling

▪ Conversely, a < 1 leads to a signal g(t) that is an expanded version of x(t).



Signal Operations: Time Reversal 

▪ A time reversed version of the signal x(t) is obtained through

g(t) = x(-t)

▪ Graphically this corresponds to flipping the signal around the vertical axis.



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: sop_demo2



Signal Operations: Example 1.3



Signal Operations: Example 1.3 (a) – Solution
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Signal Operations: Example 1.3 (a) – Solution
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Signal Operations: Example 1.3 (a) – Another Solution



Signal Operations: Example 1.3 (b) – Solution
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Signal Operations: Example 1.3 (b) – Solution
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Signal Operations: Example 1.3 (b) – Another Solution



Signal Operations: Problem 1.4



Signal Operations: Problem 1.4 – Solution
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Signal Operations: Problem 1.4 – Solution



Signal Operations: Problem 1.4 – Solution



Signal Operations: Problem 1.4 – Solution



Signal Operations: Problem 1.4 – Solution
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Signal Operations: Problem 1.4 – Solution
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Basic Building Blocks For Continuous-Time Signals

▪ There are certain basic signal forms that can be used as building

blocks for describing signals with higher complexity.

▪ In this section we will study some of these signals.

▪ Mathematical models for more advanced signals can be developed

by combining these basic building blocks through the use of the

signal operations described before.



Unit-Impulse Function

▪ The unit-impulse function plays an important role in mathematical

modeling and analysis of signals and linear systems.



Unit-Step Function

▪ The unit-step function is useful in situations where we need to model a

signal that is turned on or off at a specific time instant.



Unit-Pulse Function

▪ We will define the unit-pulse function as a rectangular pulse with unit

width and unit amplitude, centered around the origin.



Unit-Ramp Function

▪ The unit-ramp function has zero amplitude for t < 0,

and unit slope for t ≥ 0.



Unit-Triangle Function

▪ The unit-triangle function is defined as



Problem 1.8 (a)



Problem 1.8 (a) – Solution



Demos Installation Instructions

1. Download the current version of the archived file from

http://www.signalsandsystems.org/downloads

2. Uncompress the archive “SigSys_MATLAB_v1_03b.zip”.

3. Copy the folder SigSys to a directory such as “C:\SigSys”.

http://www.signalsandsystems.org/downloads


Demos Installation Instructions

4. Start MATLAB.

5. In the command window, type the following:

>> pathtool



Demos Installation Instructions

6. Click the button “Add with Subfolders…”.

This brings up the “Browse For Folder” dialog shown below:



Demos Installation Instructions

7. Click the button “Select Folder”.

8. Click the “Save” button to close the “Set Path” dialog.


