Digital Signal Processing Lab 03: Signal Representation and Modeling Abdallah El Ghamry

The purpose of this lab is to

- Understand the concept of a signal and how to work with mathematical models of signals.
- Discuss fundamental signal types and signal operations used in the study of signals and systems.
- Experiment with methods of simulating continuous- and discretetime signals with MATLAB.

Mathematical Modeling of Signals

 The mathematical model for a signal is in the form of a formula, function, algorithm or a graph that approximately describes the time variations of the physical signal.

A segment from the sound of a violin.

Continuous-Time Signals

- Consider x(t), a mathematical function of time chosen to approximate the strength of the physical quantity at the time instant t.
- In this relationship t is the independent variable, and x is the dependent variable.
- The signal x(t) is referred to as a continuous-time signal or an analog signal. x(t)

I.I. Sketch and label each of the signals defined below:

a.
$$x_a(t) = \begin{cases} 0, & t < 0 \text{ or } t > 4 \\ 2, & 0 < t < 1 \\ 1, & 1 < t < 2 \\ t - 1, & 2 < t < 3 \\ 2, & 3 < t < 4 \end{cases}$$

Continuous-Time Signals: Problem 1.1 (a) – Solution

1.2. Consider the signals shown in Fig. P.1.2. For each signal write the analytical description in segmented form similar to the descriptions of the signals in Problem 1.1.

Continuous-Time Signals: Problem 1.2 (a) – Solution

Continuous-Time Signals: Problem 1.2 (b) – Solution

Signal Operations: Addition of a Constant Offset

• Addition of a constant offset A to the signal x(t) is expressed as

g(t) = x(t) + A

Signal Operations: Addition of a Constant Offset

• Addition of a constant offset A to the signal x(t) is expressed as

g(t) = x(t) + A

Signal Operations: Multiplication By a Constant Gain Factor

• A signal can also be multiplied with a constant gain factor

g(t) = Bx(t)

Signal Operations: Multiplication By a Constant Gain Factor

• A signal can also be multiplied with a constant gain factor

g(t) = Bx(t)

Signal Operations: Adding Signals

 Addition of two signals is accomplished by adding the amplitudes of the two signals at each time instant.

Signal Operations: Multiplying Signals

Multiplication of two signals is carried out in a similar manner.

Signal Operations: Example 1.2

Example 1.2: Arithmetic operations with continuous-time signals Two signals $x_1(t)$ and $x_2(t)$ are shown in Fig. 1.11. Sketch the signals

a. $g_1(t) = x_1(t) + x_2(t)$ **b.** $g_2(t) = x_1(t) x_2(t)$

Signal Operations: Example 1.2 – Solution

Signal Operations: Example 1.2 – Solution

$$x_{1}(t) = \begin{cases} 2, & 0 < t < 1 \\ 1, & 1 < t < 2 \\ -1, & 2 < t < 3 \\ 0, & \text{otherwise} \end{cases} \quad x_{2}(t) = \begin{cases} \frac{1}{2}t, & 0 < t < 2 \\ -2t + 5, & 2 < t < 3 \\ t - 4, & 3 < t < 4 \\ 0, & \text{otherwise} \end{cases}$$

The addition of the two signals is obtained as:

$$g_{1}(t) = \begin{cases} \frac{1}{2}t+2, & 0 < t < 1\\ \frac{1}{2}t+1, & 1 < t < 2\\ -2t+4, & 2 < t < 3\\ t-4, & 3 < t < 4\\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.2 – Solution

$$x_{1}(t) = \begin{cases} 2, & 0 < t < 1 \\ 1, & 1 < t < 2 \\ -1, & 2 < t < 3 \\ 0, & \text{otherwise} \end{cases} \quad x_{2}(t) = \begin{cases} \frac{1}{2}t, & 0 < t < 2 \\ -2t + 5, & 2 < t < 3 \\ t - 4, & 3 < t < 4 \\ 0, & \text{otherwise} \end{cases}$$

The product of the two signals is obtained as:

$$g_{2}(t) = \begin{cases} t, & 0 < t < 1 \\ \frac{1}{2}t, & 1 < t < 2 \\ 2t - 5, & 2 < t < 3 \\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.2 – MATLAB

Signal Operations: Problem 1.3 (c)

1.3. Using the two signals $x_a(t)$ and $x_b(t)$ given in Fig. P.1.2, compute and sketch the signals specified below:

$$x_a(t) = \begin{cases} 0, & t < -1 \text{ or } t > 3\\ 2t+2, & -1 < t < 0\\ -t+2, & 0 < t < 1\\ 1, & 1 < t < 2\\ -t+3, & 2 < t < 3 \end{cases}$$

$$x_b(t) = \begin{cases} 0, & t < -1 \text{ or } t > 3\\ 1.5t + 1.5, & -1 < t < 0\\ -1.5t + 1.5, & 0 < t < 2\\ 1.5t - 4.5, & 2 < t < 3 \end{cases}$$

$$g_{3}(t) = 2x_{a}(t) - x_{b}(t) + 3$$

$$g_{3}(t) = \begin{cases} 3, & t < -1 \text{ or } t > 3 \\ 2.5t + 5.5, & -1 < t < 0 \\ -0.5t + 5.5, & 0 < t < 1 \\ 1.5t + 3.5, & 1 < t < 2 \\ -3.5t + 13.5, & 2 < t < 3 \end{cases}$$

Signal Operations: Time Shifting

• A time shifted version of the signal x(t) can be obtained through

 $g(t) = x(t - t_d)$

• If t_d is positive, g(t) is a delayed version of x(t).

Signal Operations: Time Shifting

• A negative t_d , on the other hand, corresponds to advancing the signal in time by an amount equal to $-t_d$.

Signal Operations: Time Scaling

• A time scaled version of the signal x(t) is obtained through

g(t) = x(at)

A scaling parameter value of a > 1 results in the signal g(t) being a compressed version of x(t).

Signal Operations: Time Scaling

• Conversely, a < 1 leads to a signal g(t) that is an expanded version of x(t).

Signal Operations: Time Reversal

• A time reversed version of the signal x(t) is obtained through

g(t) = x(-t)

• Graphically this corresponds to flipping the signal around the vertical axis.

Elementary Signal Operations - 2

Elementary Signal Operations - 2

Example 1.3: Basic operations for continuous-time signals

Consider the signal x(t) shown in Fig. 1.16. Sketch the following signals:

a. g(t) = x(2t-5),b. h(t) = x(-4t+2).x(t) $y(t) = \frac{x(t)}{1}$ $\frac{1}{1}$

Figure 1.16 – The signal x(t) for Example 1.3.

Signal Operations: Example 1.3 (a) – Solution

$$x(2t-5) = \begin{cases} 2, & -1 < 2t - 5 < 2\\ 1, & 2 < 2t - 5 < 3\\ -0.5, & 3 < 2t - 5 < 6\\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.3 (a) – Solution

$$x(2t-5) = \begin{cases} 2, & 4 < 2t < 7\\ 1, & 7 < 2t < 8\\ -0.5, & 8 < 2t < 11\\ 0, & \text{otherwise} \end{cases}$$

$$x(2t-5) = \begin{cases} 2, & 2 < t < 3.5 \\ 1, & 3.5 < t < 4 \\ -0.5, & 4 < t < 5.5 \\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.3 (a) – Another Solution

Solution:

a. We will obtain g(t) in two steps: Let an intermediate signal be defined as $g_1(t) = x(2t)$, a time scaled version of x(t), shown in Fig. 1.17(b). The signal g(t) can be expressed as

$$g(t) = g_1(t - 2.5) = x(2[t - 2.5]) = x(2t - 5)$$

and is shown in Fig. 1.17(c).

Figure 1.17 – (a) The intermediate signal $g_1(t)$, and (b) the signal g(t) for Example 1.3.

Signal Operations: Example 1.3 (b) – Solution

$$x(-4t+2) = \begin{cases} 2, & -1 < -4t+2 < 2\\ 1, & 2 < -4t+2 < 3\\ -0.5, & 3 < -4t+2 < 6\\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.3 (b) – Solution

$$x(-4t+2) = \begin{cases} 2, & -3 < -4t < 0\\ 1, & 0 < -4t < 1\\ -0.5, & 1 < -4t < 4\\ 0, & \text{otherwise} \end{cases}$$

$$x(-4t+2) = \begin{cases} 2, & 0.75 > t > 0\\ 1, & 0 > t > -0.25\\ -0.5, & -0.25 > t > -1\\ 0, & \text{otherwise} \end{cases}$$

Signal Operations: Example 1.3 (b) – Another Solution

b. In this case we will use two intermediate signals: Let $h_1(t) = x(4t)$. A second intermediate signal $h_2(t)$ can be obtained by time shifting $h_1(t)$ so that

 $h_2(t) = h_1(t+0.5) = x(4[t+0.5]) = x(4t+2)$

Finally, h(t) can be obtained through time reversal of $h_2(t)$:

 $h(t) = h_2(-t) = x(-4t+2)$

The steps involved in sketching h(t) are shown in Fig. 1.18(a)–(d).

Figure 1.18 – (a) The intermediate signal $h_1(t)$, (b) the intermediate signal $h_2(t)$, and (c) the signal h(t) for Example 1.3.

Signal Operations: Problem 1.4

1.4. For the signal x(t) shown in Fig. P.1.4, compute the following:

a. $g_1(t) = x(-t)$ **b.** $g_2(t) = x(2t)$ $\mathbf{c.} \qquad g_3\left(t\right) = x\left(\frac{t}{2}\right)$ **d.** $g_4(t) = x(-t+3)$ **e.** $g_5(t) = x\left(\frac{t-1}{3}\right)$ **f.** $g_6(t) = x(4t-3)$ $\mathbf{g.} \qquad g_7\left(t\right) = x\left(1 - \frac{t}{3}\right)$

c.

d.

The signal $g_{3}(t)$

g.

Basic Building Blocks For Continuous-Time Signals

- There are certain basic signal forms that can be used as building blocks for describing signals with higher complexity.
- In this section we will study some of these signals.
- Mathematical models for more advanced signals can be developed by combining these basic building blocks through the use of the signal operations described before.

Unit-Impulse Function

• The unit-impulse function plays an important role in mathematical modeling and analysis of signals and linear systems.

$$\delta(t) = \begin{cases} 0, & \text{if } t \neq 0 \\ \text{undefined}, & \text{if } t = 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1$$

$$a \, \delta(t - t_1) = \begin{cases} 0, & \text{if } t \neq t_1 \\ \text{undefined}, & \text{if } t = t_1 \end{cases}$$

$$\int_{-\infty}^{\infty} a \, \delta(t - t_1) \, dt = a$$

$$\int_{-\infty}^{\infty} a \, \delta(t - t_1) \, dt = a$$

Unit-Step Function

• The unit-step function is useful in situations where we need to model a signal that is turned on or off at a specific time instant.

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

$$u(t - t_1) = \begin{cases} 1, & t > t_1 \\ 0, & t < t_1 \end{cases}$$

$$u(t - t_1) = \begin{cases} 1, & t > t_1 \\ 0, & t < t_1 \end{cases}$$

Unit-Pulse Function

• We will define the unit-pulse function as a rectangular pulse with unit width and unit amplitude, centered around the origin.

$$\Pi(t) = \begin{cases} 1, & |t| < \frac{1}{2} \\ 0, & |t| > \frac{1}{2} \end{cases}$$

Unit-Ramp Function

 The unit-ramp function has zero amplitude for t < 0, and unit slope for t ≥ 0.

Unit-Triangle Function

• The unit-triangle function is defined as

$$\Lambda(t) = \begin{cases} t+1, & -1 \le t < 0\\ -t+1, & 0 \le t < 1\\ 0, & \text{otherwise} \end{cases}$$

$$\Lambda(t)$$

$$1$$

$$t$$

I.8. Sketch each of the following functions.

a.
$$\delta(t) + \delta(t-1) + \delta(t-2)$$

Problem 1.8 (a) – Solution

$$\delta(t) + \delta(t-1) + \delta(t-2)$$

1. Download the current version of the archived file from

http://www.signalsandsystems.org/downloads

Lownload MATLAB files to accompany the book (For MATLAB versions R2014b or newer)

Detailed installation instructions are here. Alternatively, you can download installation instructions as a pdf file.

- 2. Uncompress the archive "SigSys_MATLAB_v1_03b.zip".
- 3. Copy the folder SigSys to a directory such as "C:\SigSys".

Demos Installation Instructions

4. Start MATLAB.

5. In the command window, type the following:

>> pathtool

	MATLAR soarsh path				
Add Folder	MATLAB search path:				
	C:\SigSys				
Add with Subfolders	C:\SigSys\GUI Layout Toolbox				
	C:\SigSys\GUI Layout Toolbox\layout				
	C:\SigSys\GUI Layout Toolbox\layoutdoc				
	C:\SigSys\GUI Layout Toolbox\layoutdoc\Examples				
	C:\SigSys\GUI Layout Toolbox\layoutdoc\Images				
Move to Top	C:\SigSys\GUI Layout Toolbox\layoutdoc\helpsearch-v2				
Movella	C:\SigSys\GUISupport				
wove op	C:\SigSvs\Interactive Demos				
Move Down	C:\SigSvs\Interactive Demos\Chapter01				
Move to Bottom	C:\SigSvs\Interactive Demos\Chapter02				
	C:\SigSys\Interactive_Demos\Chapter03				
	C:\SigSys\Interactive_Demos\Chapter04				
	C. (SigSys (Interactive_Demos) Chapter04				
	C:\SigSys\Interactive_Demos\Chapter06		~		

Demos Installation Instructions

6. Click the button "Add with Subfolders...".

This brings up the "Browse For Folder" dialog shown below:

All changes take effect immediately. Add Folder Add Folder Add with Subfolders Add with Subfolders Add with Subfolders Add with Subfolders C:\SigSys\GUI Layout Toolbox\layout C:\SigSys\GUI Layout Toolbox\layout C:\SigSys\GUI Layout Toolbox\layout C:\SigSys\GUI Layout Toolbox\layout C:\SigSys\GUI Layout Toolbox\layout Colbox\layout	Add to Path with Subfolders →
 C:\SigSys\GUI Layout Toolbox\layoutdoc\Examples C:\SigSys\GUI Layout Toolbox\layoutdoc\Images C:\SigSys\GUI Layout Toolbox\layoutdoc\helpsearch-v2 C:\SigSys\GUISupport C:\SigSys\Interactive_Demos C:\SigSys\Interactive_Demos\Chapter01 C:\SigSys\Interactive_Demos\Chapter02 C:\SigSys\Interactive_Demos\Chapter03 C:\SigSys\Interactive_Demos\Chapter04 C:\SigSys\Interactive_Demos\Chapter05 C:\SigSys\Interactive Demos\Chapter06 	Quick access OneDrive - Person This PC 3D Objects Desktop Documents Downloads Music Folder: SigSys
Remove >	Select Folder

Demos Installation Instructions

7. Click the button "Select Folder".

8. Click the "Save" button to close the "Set Path" dialog.

	📣 Set Path	- 🗆 ×
	All changes take effect immedi	ately.
Add to Path with Subfolders $\leftarrow \rightarrow \checkmark \uparrow \square C(SigSys) \qquad \checkmark \circlearrowright \qquad \bigcirc$ Search Sig(Add Folder	MATLAB search path: C:\SigSys
Organize ▼ New folder ✓ Name ✓ Quick access ▲ OneDrive - Person GUI Layout Toolbox GUISupport	Move to Top	 C:\SigSys\GUI Layout Toolbox C:\SigSys\GUI Layout Toolbox\layoutdoc C:\SigSys\GUI Layout Toolbox\layoutdoc\Examples C:\SigSys\GUI Layout Toolbox\layoutdoc\Images C:\SigSys\GUI Layout Toolbox\layoutdoc\helpsearch-y2
 This PC 3D Objects MATLAB_Code MATLAB_Doc MATLAB_Doc Documents Downloads Music 	Move Up Move Down Move to Bottom	 C:\SigSys\GUISupport C:\SigSys\Interactive_Demos C:\SigSys\Interactive_Demos\Chapter01 C:\SigSys\Interactive_Demos\Chapter02 C:\SigSys\Interactive_Demos\Chapter03 C:\SigSys\Interactive_Demos\Chapter04
Folder: SigSys Select Folder	Remove	C:\SigSys\Interactive_Demos\Chapter05 C:\SigSys\Interactive_Demos\Chapter06 Save Close Revert Default